FORTRAN Implementation of Tutorial
Input

K. Moyd

Communications Systems Research Section

This article describes the FORTRAN implementation of ‘*Tutorial Input,”” a
computer/ human interface for real-time control programs. The emphasis is on
the communication between the standardized input routine and a real-time
FORTRAN control program. Changes made to the Tutorial Input specifications
are explained, and samples of the use of this implementation are given.

I. Introduction

“Tutorial Input” is a standardized computer/human
interface for real-time control programs. It was developed
by A. I. Zygielbaum (Ref. 1), who has implemented an
assembly language version for the PDP 11/20. A version
has been written in real-time FORTRAN II for the XDS
930 computer, to be used in the pulsar automation
demonstration. Some additions were made to the Tutorial
Input specifications to increase the interface flexibility;
some modifications were made to permit the input routine
to be written entirely in FORTRAN. Much of the input
routine could be used for other computers and projects.

A summary of Tutorial Input is given in Section II; the
communication between the control program and the
input routine is described in Section III; the changes to
the original specifications are summarized in Section IV;
and examples of the use of Tutorial Input are given in
Section V. A description of the Tutorial Input routine and
the flowcharts are presented in the Appendix.

88

Il. Summary of Tutorial Input

Tutorial Input is a method by which an operator enters
parameters and control information into a real-time
control program written by a user. It allows the operator
to determine how much help he needs in entering
information rather than having a completely preprogram-
med series of messages or requiring him to memorize the
entry sequence. The input is divided into commands and
parameters. A command is a name associated with a
specific set of numeric and/or alphanumeric parameters.
A control command does not have any parameters. Once
the operator enters a command, he may enter as many of
its parameters in order as he knows. If one or more
parameters are not entered, the computer will prompt the
operator by typing out the name of the next parameter.
The process continues until all the parameters are
entered.

If the operator determines that he made an error, he
may cancel the input, causing an abnormal exit from the

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

input routine; he may backspace over the incorrect
character(s); he may delete the entire line; or he may
retype the incorrect command. An asterisk typed in place
of a parameter value causes the previously accepted value
of that parameter to be used. Certain errors are detected
by the computer. An error indication is typed out, and
operator correction is expected. The input routine is
terminated normally when no new command follows on
the same line as the last parameter of the previous
command, if there have been no uncorrected errors.

ll. Interfacing with the User’'s Program

All communication between the user’s program and the
input routine is by means of tables in COMMON. These
tables must be initialized by the user before the input
routine is entered the first time. The names used below to
define the tables are those used in the input routine.

A set of four tables defines the commands, and a set of
three tables defines the parameters. Each command table
must be dimensioned at least NCOM (in COMMON), the
number of commands. The ordering of commands is not
important. ICOM(I) gives the four-character name of the
I'' command. INPAR(I) is the number of parameters, and
INDEX(]) is the index in the parameter tables of the first
parameter associated with that command. IFLAG(I) is set
to 1 upon normal exit from the input routine if the Ith
command was successfully entered. Each parameter table
must be dimensioned at least NPAR (in COMMON), the
total number of parameters. The parameters for the Ith
command have indices from INDEX(I) to INDEX(I) +
INPAR(I) - 1. One parameter may be included in several
commands. Control commands (no parameters) have no
entries in the parameter tables. INAME(]) is the four-
character name typed out if the Jth parameter is the next
one to be entered. ICODE(]) specifies how the parameter
is to be decoded. In this version ICODE(]) = -1 for
floating point, 0 for integer, and 1 for alphanumeric.
Because floating point numbers take two words on the
XDS 930 while integers take only one, there are two
tables for returning parameter values, PARAM and
IPARAM. IPIND(]) is the index in the appropriate
parameter storage table; ICODE(]) determines which
table is to be used. Alphanumeric parameters are stored in
the integer table and are therefore limited to four
characters on the XDS 930.

Both the flag table (IFLAG) and the parameter storage
tables are buffered in the input routine. The internal
parameter buffer is entirely floating point. The values in
the parameter storage tables are moved to the internal
parameter buffer upon entry to the input routine, and the

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

updated values are moved from the internal buffer to the
storage tables upon normal exit. Therefore, any change
made in the parameter storage tables by the user’s
program while the input routine is active may be
overwritten when the input routine is done. The flag table
is buffered differently. An internal buffer is zeroed upon
entry to the input routine. As each command is
successfully processed, the corresponding flag is set in the
buffer. Upon normal exit from the input routine, those
flags corresponding to new input are set in the flag table.
The other flags are not affected at all. Therefore, the user
may safely reset flags even when the input routine is
active.

The use of the parameters and flags is left to the user.
In cases in which parameter changes may occur at any
time, the value in the parameter storage table may be
used as the parameter value in the user’s program. In
cases in which the timing of parameter changes is critical,
the appropriate flag(s) can be checked and the values
transferred from the storage tables to the active locations
at the proper time. The flags corresponding to control
commands can be tested and acted upon in a background-
loop or in appropriate interrupt routines. A flag should be
reset as soon as its command is acted upon to decrease the
probability of not recognizing a new set of parameters.

At the present time, the user determines how entry to
the input routine is initiated. Two possible methods are
console interrupt and breakpoint control. The user must
make sure that operator input/output (I/0) does not
interfere with any other 17/0. This may be a problem if
either the operator 1/0 or other I/0 is interrupt
controlled.

IV. Additions and Modifications

The original Tutorial Input did not contain the flag
table. Its inclusion allows parameter changes to be
detected more easily and permits the timing of operator
input to be made independent of the basic user program
(with the exception of I/0 interference). By means of the
flag table, commands with no parameters can be used for
program control. The only effect of such a control
command is to set the corresponding flag.

The remaining tables are basically the same as in the
assembly language implementation except that array
indices are used in place of addresses. The internal
parameter buffer is entirely floating point.

A method for indicating errors was established. Because
a new line is not accepted until the previous line is

89

completely processed, any recognizable error must be on
the last line typed. A A on the line below marks the first
character of the command or parameter in error. All
commands and parameters preceding the A have been
accepted by the input routine; everything following the A
will be ignored. In the case of a command error, input is
to be continued with the typing of a new command. In
case of a parameter error, the message corresponding to
that parameter is typed out, and input is to be continued
with the entering of that parameter. An error message is
typed on the line following the error indicator. The
possible messages are:

ILLEGAL COMMAND—longer than four characters.

UNRECOGNIZED COMMAND-—not in the table of
command names.

ILLEGAL PARAMETER—longer than four characters
for an alphanumeric param-
eter, illegal character for a
numeric parameter.

The control characters Re, C¢ and E¢ described in Ref. 1
do not exist on the 930 typewriters. They have been
replaced by ¥ , <, and +, respectively. The # causes
immediate exit from the input routine without transfer-
ring any parameters from the internal buffer to the storage
tables and without changing any flags. The < causes the
previous character to be deleted. As many characters will
be deleted as there are <s until the beginning of the line
is reached. Excess <s will be ignored. The #+ causes the
entire line to be deleted. A carriage return may be done
before retyping the line.

V. Sample of Tutorial Input

A program was written to test the Tutorial Input
routine. It set up the necessary tables in COMMON. The

command and parameter definitions are given in Table 1.
In this case, NCOM = 4 and NPAR = 5. Three of the
parameters are stored in the integer table IPARAM; two,
in the floating point table PARAM. Both tables were
zeroed at the beginning of the test program.

The input routine was called whenever a specific
breakpoint was set. The flag table was zeroed before each
call. Upon return to the main program, the tables IFLAG,
IPARAM, and PARAM were typed out.

Typewriter output from the test program is shown in
Figs. 1 and 2. The entry numbers were added later. The
underlined characters were typed out by the computer;
the rest were entered by the operator. Figure 1 gives
examples of normal use of Tutorial Input. Entries 1, 2, and
3 show the command POSN being entered in three ways:
with no prompting, with complete prompting, and with
partial prompting. The use of the asterisk, the effect of a
no-parameter command (STOW), and the combining of
several commands are shown in entries 4, 5, and 6,
respectively. Figure 2 gives examples of the error
indications and shows the use of the operator correction
features. The parameters at the beginning of the
generation of Fig. 2 were the same as at the end of Figure
1. Entry 1 shows two illegal commands (more than four
characters). Entry 2 shows a command, STW, that is not
in the command list. In this case, the parameters for
RECV were accepted. Entry 3 shows an illegal parameter
(a letter in a numeric parameter). In this case, the first
parameter for RECV was accepted; only the second
parameter (ATTN) had to be entered. The use of the
input cancellation (#), backspace (<), and line delete (+)
are shown in entries 4, 5, and 6, respectively. In entry 6, a
carriage return was typed before the line was reentered.

Reference

1. Zygielbaum, A. I, “Tutorial Input—Standardizing the Computer/Human
Interface”, in The Deep Space Network Progress Report 42-23, pp. 78-86, Jet
Propulsion Laboratory, Pasadena, California, October 15, 1974.

90

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

Table 1. Tutorial input command and parameter definitions

Command definitions

Name Number of parameters Index of first parameter
POSN 3 1
TMCN 1 4
STOW 0 -
RECV 2 4
Parameter definitions
Index Message Decoding type Storage index
1 RA 0 (integer) 1
2 DEC 0 2
3 TYPE 1 (alphanumeric) 3
4 TMCT —1 (floating point) 1
5 ATTN -1 2

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

91

92

o D 34

g =98 37 _ALPr
y

A7 35 NI

. 3J o0J

o7 b3 A

« 99 «Jd

14 a1 49 A

99 L)

Q14
POSN/99,56,3,RECV/ 15, 67 4= 33,92
1491 99 55 8

1567 =38.92

STOW/RECV/
TUCT:

97.5
ATTN:
8.6
99

o
-—
-—

99 56 38

97459 28,63

Fig. 1. Normal Input

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

STOWE/

g F4A
RECV/*,58,5
L9 1] 23 26 B 21e32d 58,52

RECV/28,-56,5T4/

UNRECOGNIZED COMMAND
STOW/
311 99 56 B 8448 -56.04

RECV/97.3,5A

ILLFGAL PARAMETER
ATTNe.
365,17

0 ¥ 4 1 99 56 B 738 365,74

4 STOW/RECV/ST
9.3 9 8 99 56 B 9139 335,74

s STOR/RECV/5T<547,17
3211 99 56 B 5,07 17,09

6 STOW/RECV/ 6T
STOW/RECV/63.7,59
2.1 99 56 B A3a 13 53,48

Fig. 2. Errors

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

Appendix

The Tutorial Input routine consists of a main routine
named TUTOR and four subroutines named TYPEIN,
AFIELD, NFIELD, and ERRIND. There is no additional
COMMON needed for communication among these
routines.

TYPEIN accepts one line of input, edits out backspaces,
counts the resulting number of input characters, and sets a
flag if the input cancellation character was entered. The
input line is stored in an array with one character per
word.

AFIELD takes the next field of the input line,
terminated by a slash, comma, or blank (end of line), and
packs it into one four-character word (blank filled to the
right if necessary). The terminator is not included in the
resulting word. If there are more than four characters, a
flag is set to -1. If an asterisk occurs in the field, the flag is
set to 1. Otherwise, the flag is 0.

NFIELD takes the next field of the input line,
terminated by a comma or blank, and packs it into three
words, four characters per word (blank filled at the end if
necessary). A comma is included as the last non-blank
character if there are fewer than 12 characters. A flag is
set to -1 if there are more than 12 characters or if there is
a character other than an asterisk, number, sign, or
decimal point. If an asterisk occurs in the field, the flag is
set to 1. Otherwise the flag is 0.

ERRIND causes the error indicator to be typed out. It
sets the indicator at the actual point of the error, even if
the line included backspaces.

TUTOR takes care of the entire input procedure,
including the accepting of input, processing of commands
and parameters, error indications, and buffer transfers. The
detailed procedures have been covered in previous
sections of the article and will not be repeated here.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

|

TUTOR

STORAGE TABLES
TO BUFFER

TRANSFER VALUES
FROM PARAMETER

!

ZERO FLAG
BUFFER

I

/

TYPEIN

ACCEPT
ONE LINE

Z-1

CHAR
POINTER =1

I

/

AFIELD

PICKUP
ONE FIELD

IERR

/

ERRIND

MARK
ERROR

COMPARE FIELD
WITH LIST OF
COMMAND

TYPE
MESSAGE
(ILLEGAL
COMMAND)

NAMES

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

NO

I

CHAR POINTER
AT FIRST CHAR

1

ERRIND

MARK
ERROR

TYPE MESSAGE
(UNRECO G~
NIZED
COMMAND)

YES

\

GET NUMBER
OF PARAM

NUMBER
OF PARAM

ZERO PARAM
COUNTER
GET INDEX OF
FIRST PARAM

(O—

YES

ANY INPUT
LEFT

O—
i

TYPE NEXT
MESSAGE

TYPEIN

ACCEPT ONE
LINE

CHAR
POINTER =1

(—orn

INC PARAM
COUNT, YES
INDEX
o (8
(NUMERIC) (ALPHANUM) TRANSFER
-1, DECODING VALUES TO
TYPE PARAM STOR-
AGE TABLES
NFIELD AFIELD SET FLAGS
GET NEXT GET NEXT FIELD- IN FLAG
FIELD-NUMERIC ALPHANUMERIC TABLE
(PREV VAL) (ERROR) (ERROR) (PREV VAL) @
! IERR ul -1 IERR !
o ! !
DECODE ERRIND STORE IN
F12.0 MARK PARAM
: ERROR BUFFER
TYPE
STORE IN MESSAGE
PARAM \LLE
BUFFER (ILLEGAL
PARAM)
DECR
PARAM
COUNTER,
INDEX

YES

ALL PARAM

ENTERED

SET FLAG
IN FLAG
BUFFER

I—

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

AFIELD

i

IERR = 0
CHAR COUNT
=0

PICK UP
NEXT
CHARACTER

YES

BLANK QUT
RESULT WORD

{

i

NULL

\ FIELD

IERR = 1

gNO

INC CHAR
POINTER

ENCODE
1 CHAR/WD
INTO 4
CHAR/WD

1

MOVE CHAR
PTR TO ONE
BEYOND

TERMINATOR

(=)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

INC CHAR
COUNT

NO

MORE THAN
4 CHAR

97

NFIELD

{

IERR = 0
CHAR
COUNT =
0
'
PICK UP
NEXT CHAR
YES
CHAR =,
YES
BLANK OUT
3RESULT
WORDS YES
INC CHAR IERR =
COUNTER R=l
¥ CHAR =+) YES
PACK FIELD
4 CHAR/WD
¥ YES
SET CHAR
POINTER TO |
BEYOND
TERMINATOR
YES
CHAR = A YES N
\ NUMBER /
INC CHAR
\ERR = -1 COUNT
@ YES MORE

THAN 12 NO

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

DECR J

INPUT (J) =

CHAR INC 1

IND (J) = |

YES
J<0 1
I >80
INC J ves
I=1 NO
I _ [Nno

IERR == 1

TYPEIN

IERR =0

ACCEPT
ONE LINE OF

ERRIND

¥

J ="ORIGINAL
POSITION OF

ERROR
'

SET QUTPUT
LINE UP TO
JTO -'S

'

SET A AT
ERROR

PICK UP

" cHaR

J=-1

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

TYPE OUT
LINE

@D

99

